

## WEEKLY TEST TYJ -01 MATHEMATICS SOLUTION 08 SEPTEMBER 2019

31. (c) = 
$$(1+3x)^2(1-2x)^{-1}$$
  
=  $(1+3x)^2\left(1+2x+\frac{1.2}{2.1}(-2x)^2+....\right)$   
=  $(1+6x+9x^2)(1+2x+4x^2+8x^3+....)$ 

Therefore coefficient of  $x^3$  is (8 + 24 + 18) = 50.

32. (c) 
$$(1-x)^{3/2}$$
  

$$= \left[1 + \frac{3}{2}(-x) + \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{1}{2!}(-x)^2 + \frac{3}{2} \cdot \frac{1}{2}\left(-\frac{1}{2}\right) \frac{1}{3!}(-x)^3 + \dots\right]$$

$$= 1 - \frac{3}{2}x + \frac{3}{8}x^2 + \frac{x^3}{16} \text{ (only four terms)}.$$

33. (c) 
$$(1 + x)^{27/5}$$

$$T_{r+1} = \frac{n(n-1)(n-2).....(n-r+1)}{r!} (x)^r$$

For first negative term n-r+1<0;  $r>\frac{32}{5}$ .

:. First negative term is 8<sup>th</sup> term.

$$= 2[x^5 + {}^5C_2x^3\{(x^3 - 1)^{1/2}\}^2 + {}^5C_4x\{(x^3 - 1)^{1/2}\}^4]$$
  
=  $2[x^5 + 10x^3(x^3 - 1) + 5x(x^3 - 1)^2]$   
=  $5x^7 + 10x^6 + x^5 - 10x^4 - 10x^3 + 5x$ ,

which is a polynomial of degree 7.

**35.** (b) 
$$\frac{(n+1)(n+2)}{2} = 45$$
 or  $n^2 + 3n - 88 = 0 \Rightarrow n = 8$ ..

36. (b) 
$$(2 + \sqrt{2})^4 = (\sqrt{2})^4 (\sqrt{2} + 1)^4$$
  

$$= 4[^4C_0 + ^4C_1(\sqrt{2}) + ^4C_2(\sqrt{2})^2 + ^4C_3(\sqrt{2})^3 + ^4C_4(\sqrt{2})^4]$$

$$= 4[1 + 4\sqrt{2} + \frac{4 \cdot 3}{2} \cdot 2 + \frac{4 \cdot 3 \cdot 2}{1 \cdot 2 \cdot 3} \cdot 2\sqrt{2} + 4]$$

$$= 4[1 + 4\sqrt{2} + 12 + 8\sqrt{2} + 4] = 4[17 + 12\sqrt{2}]$$

$$= 4[17 + (=17)] = 4[34] = 136.$$

37. (a) We know that n! terminates in 0 for  $n \ge 5$  and  $3^{4n}$  terminator in 1, (:  $3^4 = 81$ )

$$\therefore 3^{180} = (3^4)^{45}$$
 terminates in 1

Also  $3^3 = 27$  terminates in 7

 $\therefore 3^{183} = 3^{180}3^3$  terminates in 7.

∴ 183!+3<sup>183</sup> terminates in 7

*i.e.* the digit in the unit place = 7.

**38.** (b) 
$$5^{99} = (5)(5^2)^{49} = 5(25)^{49} = 5(26-1)^{49}$$
  
-  $5 \times (26) \times (Positive terms) = 5$  So when it is divided by 13 it gives the remainder

=  $5 \times (26) \times$  (Positive terms) – 5, So when it is divided by 13 it gives the remainder – 5 or (13 – 5) *i.e.*, 8.

39. (b) 
$$(x+a)^n + (x-a)^n = 2[x^n + {}^nC_2x^{n-2}a^2 + {}^nC_4x^{n-4}a^4 + {}^nC_6x^{n-6}a^6 + \dots]$$
  
Here,  $n = 6$ ,  $x = \sqrt{2}$ ,  $a = 1$ ;  ${}^6C_2 = 15$ ,  ${}^6C_4 = 15$ ,  ${}^6C_6 = 1$   
 $\therefore (\sqrt{2} + 1)^6(\sqrt{2} - 1)^6 = 2[(\sqrt{2})^6 + 15.(\sqrt{2})^4.1 + 15(\sqrt{2})^2.1 + 1.1]$ 

**40.** (b) We have 
$$(1 + x^2)^5 (1 + x)^4$$
  

$$= ({}^5C_0 + {}^5C_1x^2 + {}^5C_2x^4 + ...) ({}^4C_0 + {}^4C_1x + {}^4C_2x^2 + {}^4C_3x^3 + {}^4C_4x^4)$$
So coefficient of  $x^5$  in  $[(1 + x^2)^5 (1 + x)^4]$   

$$= {}^5C_2 \cdot {}^4C_1 + {}^4C_3 \cdot {}^5C_1 = 60.$$

 $= 2[8+15\times4+15\times2+1] = 198$ 

41. (b) 
$$(x-1)(x-2)(x-3)....(x-100)$$
  
Number of terms = 100;  
 $\therefore$  Coefficient of  $x^{99} = (x-1)(x-2)(x-3)...(x-100)$   
=  $(-1-2-3-.....-100) = -(1+2+....+100)$   
=  $-\frac{100\times101}{2} = -5050$ .

**42.** (a) In the expansion of 
$$\left(ax^2 + \frac{1}{bx}\right)^{11}$$
, the general term is  $T_{r+1} = {}^{11}C_r(ax^2)^{11-r}\left(\frac{1}{bx}\right)^r = {}^{11}C_ra^{11-r}\frac{1}{b^r}x^{22-3r}$   
For  $x^7$ , we must have  $22 - 3r = 7 \Rightarrow r = 5$ , and the coefficient of  $x^7 = {}^{11}C_5.a^{11-5}\frac{1}{b^5} = {}^{11}C_5\frac{a^6}{b^5}$   
Similarly, in the expansion of  $\left(ax - \frac{1}{bx^2}\right)^{11}$ , the general term is  $T_{r+1} = {}^{11}C_r(-1)^r\frac{a^{11-r}}{b^r}.x^{11-3r}$   
For  $x^{-7}$  we must have,  $11 - 3r = -7 \Rightarrow r = 6$ , and the coefficient of  $x^{-7}$  is  ${}^{11}C_6\frac{a^5}{b^6} = {}^{11}C_5\frac{a^5}{b^6}$ .  
As given,  ${}^{11}C_5\frac{a^6}{b^5} = {}^{11}C_5\frac{a^5}{b^6} \Rightarrow ab = 1$ .

**43.** (a) Let the coefficient of three consecutive terms *i.e.* 
$$(r+1)^{th}$$
,  $(r+2)^{th}$ ,  $(r+3)^{th}$  in expansion of  $(1+x)^n$  are 165,330 and 462 respectively then, coefficient of  $(r+1)^{th}$  term  $= {}^{n}C_{r} = 165$ 

Coefficient of 
$$(r + 2)^{th}$$
 term  $= {}^{n}C_{r+1} = 330$  and  
Coefficient of  $(r + 3)^{th}$  term  $= {}^{n}C_{r+2} = 462$ 

$$\therefore \frac{{}^{n}C_{r+1}}{{}^{n}C_{r}} = \frac{n-r}{r+1} = 2$$

Or 
$$n-r = 2(r+1)$$
 Or  $r = \frac{1}{3}(n-2)$ 

and 
$$\frac{{}^{n}C_{r+2}}{{}^{n}C_{r+1}} = \frac{n-r-1}{r+2} = \frac{231}{165}$$

or 
$$165(n-r-1) = 231(r+2)$$
 or  $165n-627 = 396r$ 

or 
$$165n - 627 = 396 \times \frac{1}{3} \times (n-2)$$

or 
$$165n - 627 = 132(n-2)$$
 or  $n = 11$ .

**44.** (d) 
$$^{18}C_{2r+3} = ^{18}C_{r-3} \Rightarrow 2r+3+r-3=18 \Rightarrow r=6$$

**45.** (c) The general term in the expansion of 
$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$
 is  $T_{r+1} = {}^9C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r$ 

$$= {}^9C_r \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right) x^{18-3r}$$

.....(i)

Now, the coefficient of the term independent of x in the expansion of  $(1 + x + 2x^3) \left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$  ......(ii)

= Sum of the coefficient of the terms  $x^0$ ,  $x^{-1}$  and  $x^{-3}$  in  $\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$ .

For  $x^0$  in (i) above,  $18 - 3r = 0 \Rightarrow r = 6$ . For  $x^{-1}$  in (i) above, there exists no value of r and hence no such term exists. For  $x^{-3}$  in (i),  $18 - 3r = -3 \Rightarrow r = 7$ 

 $\therefore$  For term independent of x, in (ii) the coefficient

$$= 1 \times {}^{9}C_{6}(-1)^{6} \left(\frac{3}{2}\right)^{9-6} \left(\frac{1}{3}\right)^{6} + 2 \times {}^{9}C_{7}(-1)^{7} \left(\frac{3}{2}\right)^{9-7} \left(\frac{1}{3}\right)^{7}$$

$$=\frac{9.8.7}{1.2.3}.\frac{3^3}{2^3}.\frac{1}{3^6}+2\frac{9.8}{1.2}(-1)\frac{3^2}{2^2}.\frac{1}{3^7}=\frac{7}{18}-\frac{2}{27}=\frac{17}{54}\;.$$